Vashe-zdoroviechko.ru

Красота и Здоровье
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Связь ферментов с витаминами примеры

Связь витамин — фермент

Существует тесная связь между ферментами и витаминами.
Коферменты – это отдельные органические соединения абсолютно небелковой природы, которые принимают активное участие в проведении ферментативной реакции в качестве отдельных акцепторов отдельных атомов или же специализированных атомных групп, отщепляемых от молекулы субстрата непосредственно ферментом.Интересно знать, что роль коферментов очень часто играют витамины или же их метаболиты. К примеру, коферментом фермента карбоксилазы является именно витамин тиаминпирофосфат, коферментом множества аминотрансфераз — исключительно пиридоксаль-6-фосфат. Как уже было сказано, коферменты являются производными витаминов, поэтому нарушение обмена веществ при витаминной недостаточности опосредовано через понижение активности определенных ферментов.

74. Обмен веществ в тканях печени и её функции.

Значение печени в азотистом обмене. На долю печени приходится около 13% всего белкового обмена. В печени синтезируется половина всех белков организма: 100% альбуминов и 80% глобулинов крови, весь фибриноген, протромбин и другие белки. Здесь образуется ферритин. Белки печени полностью обновляются в течение недели (в других органах — за 17 сут и больше). Материалом для образования белков служат аминокислоты и другие соединения, поступающие с током крови из пищевого канала и других органов. В печени происходит синтез многих аминокислот и их обмен. Печень — основной орган, в котором происходит обезвреживание аммиака и других ядовитых азотистых соединений.

Значение печени в углеводном обмене. В печени происходит биосинтез и расщепление различных углеводов. Прежде всего, печень поддерживает в организме определенное содержание глюкозы, поступающей сюда из тонкой кишки с током крови. В среднем 3% глюкозы превращается в гликоген, до 30% — в жирные кислоты, 50% служит источником энергии. Эти процессы регулируются нейрогуморальными путями и самой тканью печени через активирование и ингибирование соответствующих ферментных систем. Инсулин способствует биосинтезу гликогена из моноз, адреналин и глюкагон — его распаду. В печени около 80% молочной кислоты, образовавшейся при анаэробном распаде углеводов, идет на ресинтез гликогена. Содержание гликогена в печени колеблется в пределах 1,5-20% общей массы органа. При недостатке глюкозы в крови и тканях печени происходит гликонеогенез. На уровень сахара в крови оказывают влияние натрий и калий. Ионы K + способствуют синтезу гликогена, ионы Na + — распаду. Их содержание в крови регулируется гормоном альдостероном. Химическая энергия углеводов освобождается при анаэробном гликогенолизе или гликолизе, в цикле трикарбоновых кислот и пентозофосфатном пути.

Значение печени в липидном обмене. Из тонкой кишки через воротную вену в печень поступают липиды, синтезированные в кишечной стенке и частично за счет кормов. Содержание липидов здесь колеблется от 3 до 8%, а в отдельных случаях — до 30% сухого остатка. Основную массу составляют фосфатиды (около 90%). В печени происходит распад и синтез жиров. Жирные кислоты подвергаются различным превращениям: удлинению или укорочению углеродных цепей, дегидрированию, β-окислению, использованию в качестве материала для биосинтеза молекул других липидов. Образуются жиры, свойственные для данного вида животного. Распад высших жирных кислот начинается в печени и завершается в других органах и тканях. При болезнях печени в моче появляются ацетоновые тела.

Печень — главный орган биосинтеза фосфатидов. Часть их используется самой печенью для процессов физиологической регенерации, основная же масса с током крови доставляется к различным органам и тканям. Для образования молекулы фосфатида используются вещества, синтезированные в гепатоцитах (глицерин, высшие жирные кислоты), и соединения, поступившие из кормов (холин, инозит, метионин). Особенно много фосфатидов расходуется у коров во время лактации, у домашней птицы — во время яйцекладки.

Печень — орган, где активно протекает обмен стеринов и стеридов. Источник для биосинтеза холестерина — ацетил-КоА. Так, после прохождения через ткани печени жидкостей (например, крови), богатых ацетил-КоА, содержание в них холестерина возрастает до 30%. В печени из холестерина и высших жирных кислот образуются стериды и желчные кислоты. Холестерин и стериды откладываются в купферовых клетках, после чего используются для различных нужд организма, 40% всего холестерина превращается в желчные кислоты. Избыток холестерина выделяется с мочой.

Значение печени в обмене минеральных веществ. В печени протекает активный водно-солевой обмен. Так, избыток воды, поступающей из крови, используется для образования лимфы и желчи. В печени образуется 1 /2— 1 /3 всей лимфы организма. Печень участвует в поддержании кислотно-щелочного равновесия организма. Она — депо для многих минеральных веществ. Минеральные вещества здесь находятся в виде солей, кислот, ионов, биокомплексных соединений. В печени депонируется в виде ферритина около 25% всего железа. Ткани печени богаты натрием, калием, кальцием, хлором, магнием и другими макро- и микроэлементами. Многие катионы являются активаторами ферментов. Некоторые металлы (Mg, Mn, Fe, Cu, Zn) входят в состав молекул металлоферментов печени.

Печень и обмен витаминов. Печени принадлежит важная роль в обмене витаминов. Так, жирорастворимые витамины всасываются после эмульгирования их частиц желчью. Каротины корма в печени расщепляются ферментом каротиназой с образованием витаминов группы А. В тканях печени откладываются витамины А, E, С, B1, B2, B6, PP, пантотеновая кислота, биотин, D, К и B12. Они (кроме первых двух и D) используются для биосинтеза многих ферментов.

Печень и обмен гормонов. Печень регулирует оптимальную активность многих гормонов. При прохождении через ткани печени вместе с кровью активность гормонов снижается, а их избыток разрушается ферментами. В частности, гормоны пептидного и белкового происхождения расщепляются здесь до аминокислот пептид-гидролазами. Тироксин инактивируется, образуя с глюкуроновой кислотой парное соединение, которое выделяется с желчью. В печени происходит инактивация андрогенов, эстрогенов и кортикостероидов с образованием глюкуронидов и эфиров с серной кислотой.

Функции печени

1. Обмен веществ. Клетки печени (гепатоциты) участвуют практически во всех обменных процессах: углеводном, жировом, белковом, водном, минеральном, пигментном, витаминном, гормональном. Через воротную вену в печень идет кровь из всего желудочно-кишечного тракта и селезенки. Полезные вещества, проходя через печень, подвергаются обработке для лучшего усвоения организмом, после чего пополняют запасы в печени либо распределяются дальше через печеночные вены.
2. Очистка организма от токсинов. Печень выполняет функцию фильтра между пищеварительным трактом и большим кругом кровообращения. В зависимости от условий существования человека, качества его питания и других факторов его кровь насыщена в разных пропорциях не только питательными, но и токсичными веществами. Токсины, находящиеся в крови, подвергаются в печени разрушению. Печень не только обезвреживает яды, постоянно образующиеся в результате обменных реакций, но и преобразует их в нетоксичные и даже полезные вещества. Например, печень участвует в образовании мочевины (конечного продукта белкового обмена)
3. Секреция и выделение желчи. Кроме кровеносных сосудов, справляться с ролью надежного фильтра печени помогает сеть желчных капилляров и протоков. В сутки печень производит из отслуживших эритроцитов около одного литра желчи. Желчь нейтрализует кислую пищевую кашицу, переходящую из желудка в двенадцатиперстную кишку, помогает переваривать жиры, способствует нормальному распространению питательных веществ и выведению токсинов из организма.
4. Синтез биологически активных веществ. Печень участвует более чем в 500 биохимических реакциях. Исходным материалом при этом могут быть любые компоненты, попадающие в наш организм через пищеварительный тракт, дыхательную систему и кожу. Печень задействована в производстве около половины всей вырабатываемой организмом лимфы. Клетки печени производят белки, факторы свёртывания крови, сахар, жирные кислоты и холестерин.
5. Накопление необходимых организму веществ. Печень — настоящий склад питательных веществ. В ее ткани откладываются многие витамины, железо, гликоген. В случае необходимости печень снабжает этими веществами другие органы и клетки. Кроме того, печень — самый важный резервуар крови, в ней происходит образование и накопление эритроцитов.
6. Защита организма. Печень препятствует распространению в организме возбудителей болезней, защищает нас от инфекций, поддерживает иммунитет организма, а также способствует заживлению ран.
7. Функция контроля. Печень обеспечивает нормальный состав крови. Это необходимо для хорошего функционирования мозга. Заболевание печени вызывает изменение состава крови и может привести к нарушению функций мозга, к психическим, умственным нарушениям и нарушениям нормального поведения (печеночная энцефалопатия).
Перечисленные функции показывают жизненную важность функций печени для человека и недопустимость их нарушения. Поэтому природа позаботилась о ее надежной защите. У печени феноменальная способность к восстановлению. Ни один другой орган не способен так регенерировать и заживлять собственные клетки, как печень. Однако, несмотря на это свойство, при постоянном воздействии неблагоприятных факторов может происходить дегенерация описанных функций и развитие печеночных заболеваний.

Ферменты – биологические катализаторы. Значение ферментов

В природе существуют особые вещества белковой природы, одинаково успешно функционирующие как в живой клетке, так и за её пределами. Это ферменты. С их помощью организм переваривает пищу, выращивает и разрушает клетки, благодаря им эффективно работают все системы нашего организма и, в первую очередь, центральная нервная система. Без ферментов в мире не существовало бы йогурта, кефира, сыра, брынзы, кваса, готовых каш, детского питания. Из чего состоят и как устроены эти биокатализаторы, недавно ставшие верными помощниками биотехнологов, как их отличают друг от друга, как они облегчают нашу жизнь, об этом вы узнаете из этого урока.

Определение ферментов

Ферменты – это белковые молекулы, которые синтезируются живыми клетками. В каждой клетке насчитывается более сотни различных ферментов. Роль ферментов в клетке колоссальна. С их помощью химические реакции идут с высокой скоростью, при температуре, подходящей для данного организма.

Читать еще:  Какой витамин в

То есть ферменты – это биологические катализаторы, которые облегчают протекание химической реакции и за счет этого увеличивают её скорость. Как катализаторы они не изменяют направление реакции и не расходуются в процессе реакции.

Ферментыбиокатализаторы – вещества, увеличивающие скорость химических реакций.

Без ферментов все реакции в живых организмах протекали бы очень медленно и не могли бы поддерживать его жизнеспособность.

Наглядный пример работы ферментов – сладковатый вкус во рту, который появляется при пережевывании продуктов, содержащих крахмал (например, риса или картофеля). Появление сладкого вкуса связано с работой фермента амилазы, которая присутствует в слюне и расщепляет крахмал (рис. 1). Крахмал является полисахаридом, и сам по себе безвкусный, но продукты расщепления крахмала (моносахариды) с меньшей молекулярной массой (декстрины, мальтоза, глюкоза) сладкие на вкус.

Рис. 1. Механизм действия амилазы

Все ферменты – глобулярные белки с третичной или четвертичной структурой. Ферменты могут быть простыми, состоящими только из белка, и сложными.

Сложные ферменты состоят из белковой и небелковой части (белковая часть – апофермент, а добавочная небелковая – кофермент). В качестве кофермента могут выступать витамины – E, K, B групп (рис. 2).

Рис. 2. Классификация ферментов по их составу

Фермент взаимодействует с субстратом, не всей молекулой, а отдельной её частью – т. н. активным центром.

Механизм действия ферментов

Фермент взаимодействует с субстратом и образует короткоживущий фермент-субстратный комплекс. По завершении реакции, фермент-субстратный комплекс распадается на продукты и фермент. Фермент в итоге не изменяется: по окончании реакции он остается таким же, каким был до неё, и может теперь взаимодействовать с новой молекулой субстрата (рис. 3).

Ученые подсчитали, что добавление ферментов в стиральные порошки на 30-35% увеличивает моющую способность данного порошка.

Из истории открытия ферментов

Ферменты были открыты при изучении процессов брожения. Представления о том, что химические процессы внутри живых организмов протекают под действием каких-то особенных веществ, возникло более 200 лет назад. В XIX века Луи Пастер (рис. 7) доказал, что сбраживание дрожжами сахара в спирт катализируется веществами белковой природы. Пастер ошибочно считал, что ферменты неотделимы от живых клеток. Другой ученый, Эдуард Бухнер, доказал, что в водных экстрактах живых клеток находится набор ферментов, катализирующих превращение сахара в спирт. Именно его открытие дало начало новой науке – энзимологии.

Успехи энзимологии во второй половине XX века привели к тому, что в настоящее время выделено и очищено более 2000 ферментов, которые используются в различных отраслях человеческой деятельности.

Домашнее задание

1. Что такое фермент?

2. Как ферменты работают?

3. Как ферменты получают имена? Назовите известные вам группы ферментов.

4. Назовите ученых, которые внесли особый вклад в дело изучения ферментов.

5. К какому уровню организации можно отнести ферментативный катализ?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-портал Biochemistry.ru (Источник).

3. Интернет-портал Chem.msu.su (Источник).

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.

4. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. – 5-е изд., стереотип. – Дрофа, 2010. – 388 с.

5. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Роль витаминов в обмене веществ. Классификация витаминов. Гипо-, авитаминозы. Связь между витаминами и ферментами. Общая характеристика жирорастворимых витиминов

Витамины (от лат. vita – жизнь), низкомолекулярные органические соединения различной химической природы, необходимые в незначительных количествах для нормального обмена веществ и жизнедеятельности живых организмов. Многие витамины – предшественники кофакторов, в составе которых участвуют в различных ферментативных реакциях.

Длительное употребление пищи, лишённой витаминов, вызывает заболевания (гипо- и авитаминозы).

а) авитаминоз – комплекс симптомов, которые развиваются в результате длительного, полного отсутствия одного витамина;

б) полиавитаминоз – отсутствия нескольких витаминов;

в) гиповитаминоз – состояние, которое характеризуется недостаточным поступлением витаминов;

г) гипервитаминоз – комплекс физиологических и биохимических нарушений, возникающих вследствие длительного и избыточного введения в организм любого из витаминов.

В настоящее время все витамины делят на 2 группы: водорастворимые и жирорастворимые. К витаминам, растворимым в воде, относят: витамины группы B – B1 (тиамин, аневрин),B2 (рибофлавин), PP (никотиновая кислота, никотинамид, ниацин), B6 (пиридоксин, пиридоксаль, пиридоксамин), B12 (цианкобаламин); фолиевая кислота (фолацин, птероиглютаминовая кислота); В3 – пантотеновая кислота; биотин (витамин H); C(аскорбиновая кислота). К витаминам, растворимым в жирах, относятся: витамин A (ретинол); D (кальциферолы); E (токоферолы); K(филлохиноны).

Витамины группы А

Витамин А (ретинол) – антиксерофтальмический.

Признаки недостаточности витамина A у человека и животных: торможение роста, похудание и общее истощение организма, сухость кожи, ксерофтальмия («сухие глаза»), сухость слизистых оболочек, стерильность самцов, «куриная слепота». Последняя используется для ранней диагностики недостаточности витамина А. «Куриная слепота» выражается в том, что организм теряет способность различать предметы в сумерках, хотя больные днем видят нормально.

В растениях витамин А не встречается, но многие растения содержат провитамин А – каротиноиды, которые в организме человека и животных ферментативным путем могут превращаться в витамин А.

Благодаря наличию в молекуле двойных связей, витамин A может участвовать в окислительно-восстановительных реакциях, образуя при этом пероксиды, которые, в свою очередь, повышают скорость окисления других соединений. Витамин A влияет на барьерную функцию кожи, слизистых оболочек, на проницаемость клеточных мембран и биосинтез их компонентов. Действие витамина A связывают с его вероятной причастностью к синтезу белка. Витамин A, соединяясь с белком опсином, образует зрительный пигмент родопсина, который участвует в процессе световосприятия.

Витамин A широко распространен в природе. Он содержится только в продуктах животного происхождения: в печени крупного рогатого скота, свиней, птиц, в желтке яиц, сливочном масле, мясе и рыбе. Особенно много свободного витамина A в жирах печени морского окуня (35%), трески, палтуса, акулы и тунца.

Суточная потребность витамина А для взрослого человека составляет от 1 до 2,5 мг, а β-каротина – от 2 до 5 мг.

Витамин А необходим для нормального роста и дифференцировки тканей. Он выполняет роль протектора при рентгеновском облучении, регулирует процессы разложения, обладает антиинфекционным действием, усиливает иммунитет.

Гипервитаминоз – избыток витамина – вызывает воспаление глаз, тошноту, рвоту, выпадение волос.

Витамины группы D (кальциферол)

Витамины группы D (кальциферол) – антирахитический.

Эта группа витаминов представлена в виде нескольких соединений, отличающихся по строению и биологической активности. Для человека и животных активными препаратами являются витамины D2 – эргокальциферол и D3 – холкальциферол. В растениях содержатся провитамины витаминов группы D – фитостерины – метиленциклоартенол, кампестерин, ситостерин, стигмастерин, которые под действием ультрафиолетовых лучей в организме животных и человека превращаются в витамины группы D. При УФ-облучении эргостерола (выделенного из дрожжей) синтезируется витамин Д2. Предшественником витамина Д3 является холестерин, содержащийся в поверхностных слоях кожи.

Недостаток витамина D в рационе детей приводит к возникновению рахита, в основе которого лежат изменения фосфорно-кальциевого обмена и нарушение отложения в костной ткани фосфата кальция. Отмечается размягчение костей; кости становятся мягкими и под тяжестью тела принимают уродливые формы.

Недостаточность витамина D у детей вызывается в значительной степени дефицитом ультрафиолетовых лучей, способствующих образованию витамина D в коже из его предшественников. У взрослых дефицит кальциферола вызывает развитие остеомоляции.

Он служит предшественником 1,25-диоксихолекальциферола, который образуется из витамина D в коже, печени, почках, откуда он переносится в другие органы и ткани, главным образом в тонкий кишечник и кости, т.е.
1,25-диоксихолекальциферол выполняет роль гормона – вещества, синтезируемого в одном органе и регулирующего биологическую активность другой ткани (наиболее активно стимулирует сорбцию в кишечнике Са2+, а также фосфата и утилизацию Са2+ при росте костей). Таким образом, витамин D служит предшественником гормона.

Наибольшее количество витамина D содержится в продуктах животного происхождения: сливочном масле, желтке яиц, печени, жирах, в том числе в рыбьем жире. Из растительных продуктов наиболее богаты провитамином D растительные масла (подсолнечное, оливковое и др.); много витамина D в дрожжах.

Суточная потребность в витамине Dдля детей колеблется от 12 до 25 мкг (1 мкг равен 0,001 мг) в зависимости от возраста, физиологического состояния организма, соотношения солей фосфора и кальция в рационе. Гипервитаминоз сопровождается увеличением отложения солей Са в мягких тканях и внутренних органах (почках, печени).

Витамины группы Е

Витамин Е (токоферол). Токоферол в переводе с греческого означает: «токос» – потомство и «феро» – нести.

При недостатке витамина Е наблюдаются шелушение кожи, мышечная дистрофия, жировая инфильтрация печени, дегенерация спинного мозга, появление так называемых старческих пятен на руках.

Витамин Е – один из самых сильных антиоксидантов. Он предохраняет от окисления в первую очередь полиненасыщенные жирные кислоты и препятствует тем самым образованию вредных для живых организмов свободных радикалов и органических пероксидов. Витамин Е защищает также чувствительный к действию кислорода витамин A от окислительного разрушения, усиливая тем самым снабжение организма витамином А. При недостатке витамина Е наблюдается снижение интенсивности дыхания, так как витамин Е участвует в цепи переноса электронов от восстановленных анаэробных дегидрогеназ. Витамин Е регулирует синтез убихинона (кофермента Q).

Наиболее достоверна роль витамина E в защите жирных кислот в составе липидов клеточных биомембран от окислительного разрушения, нарушающего нормальное функционирование мембранных структур клетки, т.е. выполняет роль «ловушки» свободных радикалов. Витамин Е предохраняет жиры от прогоркания.

Витамин Е широко распространен в природе. Важнейшим источником витамина Е для человека являются растительные масла (подсолнечное, оливковое, хлопковое, соевое, кукурузное и др.), а также листовые овощи – салат и капуста. Наибольшие количества витамина Е содержатся в пшеничном зерне в зародыше в алейроновом слое. В муке содержание витамина Е незначительно: 1,1 мг на 100г. Суточная потребность в витамине E для взрослых составляет 20. 30 мг, при большой нагрузке (беременности, тяжелом физическом труде), а также с возрастом она увеличивается.

Читать еще:  Продукты содержащие витамин в5

Витамины группы К

Витамин K (нафтохинон).

При авитаминозе K возникают самопроизвольные кровотечения (носовые кровотечения, внутренние кровоизлияния). Кроме этого, любые повреждения кровеносных сосудов при авитаминозе K могут привести к обильным кровотечениям. У человека авитаминоз K встречается реже, чем другие авитаминозы. Это объясняется тем, что смешанная пища содержит довольно много витамина K; кроме того, витамин K синтезируется клеточной микрофлорой кишечника в количестве, достаточном для предотвращения К-авитаминоза. Несколько по-иному обстоит дело у грудного ребенка. В первые дни жизни у него еще нет бактерий в кишечнике, поэтому витамин K должен поступать к нему с материнским молоком.

Витамин K принимает участие в механизме свертывания крови. Он необходим для нормального образования в плазме крови белка протромбина, являющегося неактивным предшественником тромбина – фермента, превращающего белок плазмы крови фибриноген в фибрин – нерастворимый волокнистый белок, способствующий формированию сгустка крови. Чтобы протромбин мог активироваться и превратиться в тромбин, он должен связывать ионы Са2+. При недостатке витамина K в организме животных синтезируются дефектные молекулы протромбина, которые не могут связывать ионы Са2+.

Наиболее богаты витамином K зеленые листья каштана, крапивы, люцерны, овощи – капуста, шпинат, тыква, зеленые томаты, растительное масло, ягоды рябины.

Из животных продуктов он содержится только в печени свиньи. Суточная потребность в витамине K для человека не установлена, так как он синтезируется микрофлорой кишечника.

Взаимоотношения витаминов, гормонов и ферментов

Существует химическое родство витаминов, гормонов и ферментов и их взаимодействие в обмене веществ. На образование витаминов влияет нервная система. Например, посредством симпатических нервов и гормона адреналина освобождается связанная в тканях аскорбиновая кислота.

Витамин С необходим для активации фосфатазы — фермента, участвующего в обмене фосфора. Из витамина В1 образуются ферменты. участвующие в расщеплении углеводов, из витамина РР — окислительные ферменты в тканях.

Связь витаминов с ферментами объясняет их важную роль в обмене веществ. Отсутствие витаминов в пище вызывает нарушение образования в организме ферментов, которое приводит к заболеваниям, характерным для многих авитаминозов.

21)Каталитические функции витаминов.

Витамины выполняют каталитическую функцию в составе активных центров разнообразных ферментов, а также могут участвовать в гуморальной регуляции в качестве экзогенных прогормонов и гормонов. Несмотря на исключительную важность витаминов в обмене веществ, они не являются ни источником энергии для организма (не обладают калорийностью), ни структурными компонентами тканей.

Концентрация витаминов в тканях и суточная потребность в них невелики, но при недостаточном поступлении витаминов в организме наступают характерные и опасные патологические изменения.

Большинство витаминов не синтезируются в организме человека, поэтому они должны регулярно и в достаточном количестве поступать в организм с пищей или в виде витаминно-минеральных комплексов и пищевых добавок. Исключения составляют витамин D, который образуется в коже человека под действием ультрафиолетового света; витамин A, который может синтезироваться из предшественников, поступающих в организм с пищей; и ниацин, предшественником которого являетсяаминокислота триптофан. Кроме того, витамины K и В3 обычно синтезируются в достаточных количествах бактериальной микрофлорой толстой кишки человека [2] .

С нарушением поступления витаминов в организм связаны 3 принципиальных патологических состояния: отсутствие витамина — авитаминоз, недостаток витамина —гиповитаминоз, и избыток витамина — гипервитаминоз.

22)Водорастворимые витамины, распространение в природе и функции.

К водорастворимым витаминам относятся: витамины С, В1, В2, В3 (РР), В6, В12, фолиевая кислота, пантотеновая кислота и биотин. Их основная особенность — не накапливаться в организме совсем либо их запасов хватает на очень продолжительное время. Поэтому, передозировка возможна лишь для некоторых из водорастворимых витаминов.

Витамин С — аскорбиновая кислота участвует чуть ли не во всех биохимических процессах организма. Обеспечивает:

· нормальное развитие соединительной ткани;

· устойчивость к стрессу;

· нормальный иммунный статус;

· поддерживает процессы кроветворения.

Суточная потребность до 30 мг (дети до 3-х лет) до 120 мг (кормление грудью). Большое количество вызывает расстройство кишечника и плохо влияет на почки. Содержится в овощах и фруктах, больше всего — в болгарском перце, черной смородине, шиповнике, облепихе, листовой зелени, свежей капусте, цитрусовых.

Витамин В1 — тиамин обеспечивает проведение нервных импульсов. Суточная потребность 1,5 мг. Содержится в хлебе из муки грубого помола, сое, фасоли, горохе, шпинате, нежирной свинине и говядине, особенно в печени и почках.

Витамин В2 — рибофлавин обеспечивает: окисление жиров; защиту глаз от ультрафиолета. Суточная потребность: 1,8 мг. Содержится в яйцах, мясе, молоке и молочных продуктах, особенно в твороге, печени, почках, гречке.

Витамин В3 — ниацин (витамин РР) обеспечивает «энергетику» практически всех протекающих в организме биохимических процессов. Суточная потребность: 20,0 мг. Содержится в ржаном хлебе, гречке, фасоли, мясе, печени, почках.

Витамин В6 — пиридоксин обеспечивает: усвоение белка; производство гемоглобина и эритроцитов; равномерное снабжение клеток глюкозой. Суточная потребность: 2,0 мг. Содержится в мясе, печени, рыбе, яйцах, цельнозерновом хлебе.

Витамин В12 — кобаламин обеспечивает: нормальный процесс кроветворения; работу желудочно-кишечного тракта; клеточные процессы в нервной системе. Суточная потребность: 3,0 мкг. Содержится в продуктах животного происхождения: мясе, твороге и сыре.

Фолиевая кислота чрезвычайно важна при беременности — обеспечивает: нормальное формирование всех органов и систем плода. Обеспечивает: синтез нуклеиновых кислот (прежде всего ДНК); внутреннюю защиту от атеросклероза. Суточная потребность: 400,0 мг. Для беременных — 600 мг, для кормящих -500 мг. Содержится в зеленых листовых овощах, в бобовых, хлебе из муки грубого помола, печени.

Пантотеновая кислота обеспечивает обмен жирных кислот, холестерина, половых гормонов. Суточная потребность: 5,0 мг. Содержится в горохе, фундуке, зеленых листовых овощах, гречневой и овсяной крупе, цветной капусте, печени, почках и сердце, курином мясе, яичном желтке, молоке.

Биотин обеспечивает клеточное дыхание, синтез глюкозы, жирных кислот и некоторых аминокислот. Суточная потребность: 50,0 мкг. Содержится в дрожжах, помидорах, шпинате, сое, яичном желтке, грибах, печени.

К жирорастворимым витаминам относятся: витамины А, Д, Е и К. Их основная особенность — способы накапливаться в тканях организма, в основном, в печени.

Витамин А — ретинол обеспечивает:

процессы роста и размножения;

функционирование кожного эпителия и костной ткани;

поддержание имуннологического статуса;

восприятие света сетчаткой глаза.

Суточная потребность 900 мкг. Содержится в виде ретинола в животной пище (Рыбий жир, печень, особенно говяжья, икра, молоко, сливочное масло, сметана, творог, сыр, яичный желток) и в виде провитамина каротина в растительной (зеленые и желтые овощи, морковь, бобовые, персики, абрикосы, шиповник, облепиха, черешня).

Витамин Д — кальциферолчрезвычайно важен для новорожденного ребенка, без этого витамина невозможно нормальное формирование скелета. Кальциферол может образовываться в коже под действием солнечного света. Обеспечивает обмен кальция и фосфора в организме; прочность костной ткани. Суточная потребность 10,0 мкг (400 МЕ). Содержится в печени рыбы. В меньшей степени — в яйцах птиц. Часть витамина Д поступает в организм не с пищей, а синтезируется в коже под действием солнечных лучей.

Витамин Е — токоферолодиниз основных антиоксидантов нашего организма, инактивирующий свободные радикалы и предотвращающий разрушение клеток. Суточная потребность: 15 мг. Содержится в растительных маслах: подсолнечном, хлопковом, кукурузном, миндале, арахисе, зеленых листовых овощах, злаковых, бобовых, яичном желтке, печени, молоке.

Витамин К —обеспечивает в синтез в печени некоторых факторов свертывания крови, участвует в формировании костной ткани. Суточная потребность: 120,0 мкг. Содержится в шпинате, цветной и белокочанной капусте, листьях крапивы, помидорах, печени.

24)Каталитические свойства витаминов – (вопрос был)

25)Провитамины, распространение в природе, значение в обмене веществ.

Провитамины — это вещества, которые превращаются в витамины в организме человека.

Каротин или провитамин А в наибольшем количестве содержится в рыбьем жире, сливочном масле, красной моркови.

26)Роль нуклеиновых кислот в организме.

Биологическая роль нуклеиновых кислот заключается в том, что ДНК хранит наследственную информацию организма в виде последовательности дезоксирибонуклеотидов, различающихся азотистыми основаниями. В ДНК в закодированном виде записан соста всех белков организма. Каждой аминокислоте, входящей в состав белков, соответствует свой код в ДНК, а именно — три конкретных нуклеотида. Молекулы РНК переносят информацию от ДНК к местам клетки, где происходит синтез белка.

Ссылка на основную публикацию
Adblock
detector